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Broad-Band Simultaneous Measurement
of the Complex Permittivity Tensor
for Uniaxial Materials Using
a Coaxial Discontinuity

Nour-Eddine Belhadj-Tahar and Arlette Fourrier-Lamer

Abstract —A technique is presented for simultaneously mea-
suring the complex values of the permittivity tensor of uniaxial
materials. A gap in a coaxial line is filled with the material
under test. Complex elements of the permittivity tensor are
computed from measurements of the § parameters (S;, and
S,,) made on the gap taking into account higher order modes
excited at the discontinuity. Measured complex permittivity data
are presented from 45 MHz up to 18 GHz. This technique shows
good agreement between calculated and generally accepted val-
ues.

I. INTRODUCTION

N the microwave frequency range, experimental meth-
Iods for determining the constitutive parameters of
anisotropic materials have been investigated by various
authors [1]-[4]. The measurements may be performed by
means of the perturbation of cavity resonators, inside a
rectangular waveguide, or in free space. However, these
methods are limited in frequency or are applicable only to
particular materials [5]. The techniques using H modes or
TEM modes require various locations of the sample rela-
tive to the electric field.

The solution presented here uses an jnner coaxial con-
ductor discontinuity into which the sample to be mea-
sured is easily inserted. The electromagnetic analysis of
the structure (direct problem) is valid irrespective of the
size of the sample and the working frequency. The uncer-
tainty arising from an error in sample dimensions is not a
main factor in this method. For this study we use “mode
matching,” the method used previously [6], [7] to define
the different modes excited by the discontinuity. The
generation of higher order waves of the transverse mag-
netic type allows the simultaneous determination of the
elements of the permittivity tensor without any manipula-
tion of the sample. The determination of elements of the
permittivity tensor from §;; and §,, measurements (in-
verse problem) is linked to two infinite systems of simulia-
neous equations. We demonstrate that this problem is
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reduced to two systems, each containing three equations
with three unknowns. Computer time is therefore reason-
able without affecting accuracy.

II. DirecT PROBLEM
A. Formulation of the Problem

We examine the structure shown in Fig. 1. The inter-
ruption of the inner conductor of the coaxial line consti-
tutes a circular waveguide filled with a homogeneous and
nonmagnetic material. The sample, of thickness 2d, is
assumed to be uniaxially anisotropic. The complex per-
mittivity may be represented with the dielectric tensor:

e, 0 O
[ed]= 0 €, 0 (1)
0 0 e

z

with €, =€, — je'| and e. =€, — jel.

The coaxial line is much longer than the transverse
dimensions. It is filled with air and propagates the TEM
mode only. Moreover, the conductors are assumed to be
perfect.

At planes T1 and T2 (the air—material interfaces) the
sample can be represented as a quadrupole characterized
by its [Y] and {S] matrices [8]. The admittances are
normalized in relation to the characteristic admittance of
the coaxial line. Given that the structure is symmetrical,
the representations used are also symmetrical (Fig, 1). In
this case the relationships between the elements of the
admittance matrix and those of the scattering matrix are
easily obtained:

_ 1= yu(yi +2y13)
(L+y)(1+yu +2y5,)

(2)

S =258

_ 2yp,
(A4 yi)(+yy +2y5)

()

S =5

Let us apply the bisection theorem to the sample and to
the quadrupole. In the presence of an electric wall placed
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at plane 7T, the normalized input admittance at plant 7'1
is

(4)

If a magnetic wall is next placed at plane T, the input
admittance is

Ye=Y111+2¥1.

Y= Y11- (3)
As a result, (2) and (3) can be written as
1=y,y.
Si1=8,,= 6
11 22 (1+ym)(1+ ye) ( )
Ye— ¥
Sy= “ (7)

ST T )y

Equations (6) and (7) enable us to link the measurements
of the § parameters to the dielectric properties of the
material placed in the cell. To calculate the input
impedance y, and y,, we used the same electromagnetic
analysis as used in [6] and [7].

B. Fields in the Structure

Let us consider a TEM wave propagating in region A
of Fig. 2. In region B, the.medium anisotropy is uniaxial.
Pure E and H modes are then possible [9]. The cylindri-
cal symmetry enables us to predict that only £ modes
independent of the azimuthal angle ¢ will be excited at
the z =0 plane. To be unhampered by the line excitation
method, we take a length of coaxial line which is much
longer than the transverse dimensions so that the higher
order modes created by the source are not superposed on
the higher order modes excited by the discontinuity.

It is well known that the £ modes in a waveguide can
be derived from an electrical-type Hertzian potential
function, 7, = 7,Z, by means of the following equations
[10]:

—

H=-rot 7

(8)
)

where a time dependence of exp(jw?) is assumed. The
quantities ¢, and u, are, respectively, the permeability

©

jwe,[€]E = —13t 1ot 7,
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Fig. 2. Representation of the bisected structure.

and permittivity in free space; w =27 f; f is the operat-
ing frequency; Z” is the unit vector in the z direction; and

[e]=1, z>0 (10)
[e]=1[€,], z<0. (11)

For z > 0, =, satisfies the Helmotz equation
(A+kd)m, =0 (12)

where k= w’uy€,. However, owing to the presence of
the anisotropic dielectric where z <0, it can be easily
shown that 7, is a solution of

2827re R
Apm,+p Fre + kge,m, =0 (13)
where
62
p’= — (14)
L
and
32
Ap=A- 7 (15)

If a solution for m, of the form ¢(r,¢d)exp+y, is as-
sumed, the function ¢ satisfies the following two-dimen-
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sional scalar Helmotz equation:
A D(r,0)+ 2¢D(r,0) =0, (16)
Az B (r,0) + X2y B (r,0) =0, (17)

In circular cylindrical coordinates, the solution for the
E modes independent of azimuthal angle ¢ is

z>0

z <0,

it =C Zy(¢,r) z>0 (18)
B =D Jy(A,7) z<0 (19
where
§5=k§+yqz, q=1,2,--- (20)
M =¢,ki+p*y?, i=1,2,---, (21)

C, and D; are constants and Z, is the linear combination
of Bessel functions of the first and second kinds as
follows:

ZO({qr) = ]O(qu)—l- GAqNO(gqr)

where G, is a constant.

Once ¢{* and {® are known, the components of the
E modes in each region, A and B, are found easily.

In the air-filled region A4, the components of the total
electromagnetic field are

(22)

1
E = -;Ao[exp(+jkoz)+FeXp(_jkoz)]

+ 2 A Zy(Lr)exp(— v,7) (23)
=1
o0 é‘a
E, .=, A, —Zy(L,r)exp(—v,2) (24)
g=1 yq
1 . .
H,, = 7A0YAO[eXp(+]k0z)— Texp(— jkoz)]
+ ) A Y, Z (L r)exp(—y,2) (25)
g=1
where
LYy
A =——-C . 26
q waO q ( )

A, represents the incident TEM wave amplitude and T
its reflection coefficient at plane T'1 of the discontinuity;
Y, and Y,, are, respectively, the wave admittances of the
TEM mode and the higher order mode E|, in the coaxial
waveguide:

Y <0 (27)
A0 Ho
Jweg
Y, = 28
Agq Y, ( )
and
V=0 k. (29)

In (23), (24), and (25) Z, denotes the linear combination

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 10, OCTOBER 1991

of the pth-order Bessel functions of the first and second
kinds as follows:

Zp(gqr) = Jp(gqr)-l_ GAqu(qu)

with p=0or 1.

When an electric wall is placed at plane T, the electric
field boundary conditions at this plane provide the solu-
tions for region B:

(30)

E.p= ) BlJ(Ar)sinhy(z+d)

(31)
1=1
= EJ_ At
Eg= Z ——-—BJy(A,r)coshy,(z+d) (32)
=1 € i
*© weq€E
Hyp= Y, —j———BlJ(Ar)coshy,(z+d) (33)
=1 i
with
z’)/i
By =2D,—" exp(— y,d) (34)
Jwege
and
€
')’zzz_l/\%_elk(z)- (35)

The axial component E. for the electric field for each
E wave must be zero at the conductors in the two regions.
The following conditions are thus obtained:

Zo(£,8) = Zo(£,b) =0 (36)
To(Asa) =0. (37)

Relation (36) enables us to determine the coefficient G,
contained in (22) and (30):

_ JO({qa) _ Jo(gqb)
Ao NO(gqa) N NO(gqb) (38)

and, thus, from the following transcendental equation, the
coefficient {:

JO({qa)NO(gqb) - JO({qb)NO(gqa) =0.

The boundary conditions for the transverse components
at the plane T, are expressed in the following manner:

(39)

Ep=0, O0<r<b (40)
0 1 o0
E.p= Z Bijl(/\zr) = 7A0(1+ F) + Z qul(gqr)’
=1 g=1
b<r<a (41)
°° 1
Hon= T BY.I(A) =AY (1 T)
+ Z AqquZl(g’qr), b<r<a (42)
g=1
where
B,= B,sinhvy,d (43)
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and
WEYE | 172
Y,=—J . 7 coth )@—qk%) d
(S0 :

(44)

Coefficients A4, and B; are determined by using the
orthogonality properties of Bessel functions. The first
step is to perform the following integral:

[ (A7) E,pr. (45)
0

Using Lommel integrals and equalities (40), (41), (36), and
(37), we obtain

B, A(14T 2J4(A,D)
—_— = + ———— e
A ol )A%asz(Aia)

13

fi- v 4, bZy(Lb)

a1 Ag(1+T) {2/N -1

(46)

Next, Hp is integrated over the range b < r < a. Rela-
tions (42), (36), and (37) give

=)

a BY,
—=3 —xo—fo()nb)'

A0YA0(1 - F) ln
b i=1 i

(47)
The last step is to integrate the quantity rZ({,7)Hyp

over the range b <r < a. Hence

a*Z3(L,a)
bZ2(Lb)

Yin

2 =X

N—q
(48)

i=1

The normalized input admittance y in plane T; may be
written in the following form: 1 —T'/1+ T. Equations (46)

1 X

‘ aiZi({,a)
€ 4(L2a? -~ k3a?)"

biZ{(L,.b)

n

172
) d/a]
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and (47) allow us derive the solution:

2kgae,
Y. =1 a

lng

€ 1/2
JZ(A,b) coth [( —Xa*—¢, kgaz) d/a}
0 62
>

=~ . 72
" (—L)\%az— €, kgaz) Na* T (A,0)

€,

- A bZ ({ b
[1- § e D) (49)
q=1A0(1+F) /A -1
or, alternatively,
2kgyae i
ye=j a - (y(]— Z yqxq) (50)
In— g=1
b
where
¢ 1/2
coth (—J'/\faz—eLk%az) d/a
> €; JE(A;b)
Yo= 172 72
- [ € Ji(Aza
=t (—i)@az—qk(ﬁaz) Na? 1(Xe)
EZ
(51)
q
= —bZ. (L b 52
Xq A0(1+]‘) 1({q ) ( )
e ‘ 1/2
coth ( L)\zl.azwelkgaz) d/a
i : JZ(A;D)
yq_ =1 [ €1 2.2 2.2 12 2.2 2 2 ‘112()‘1‘“) .
—.—A’a —€, kja (Aia —{,a )
(53)

The coefficients x, are obtained from (48) using relations
(46), (44), and (28). This leads to the matrix equation

€.
. coth[(——)\%az—gkgaz

¥ z T3 (Ab)
= 2 TH (M)
' (—)@az—eL k%az) (Ma?—{la?)
e 12
Aa? coth [(—l—/\faz —€, k%az) d/a}
z J$(A,b)

i=lg=1 €1
a (_W_Q K2a?

1/2
) ()x%az - é’qzaz)(/\%az — {nzaz)

(54
77(\a) (39
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Fig. 3. Complex permittivity tensor measured for an alumina sample in the 45 MHz-18 GHz frequency range;
thickness = 2 mm; APC7-mm standard.

or, alternatively,

EAqnxq=yn, n=1,2--"

g=1

(55)

where

gn

L)

1/2
€
Aa? coth [(i/\faz —€, kéaz) d/aJ

z

. 1,2
=t (Z—ngaz—quﬁ) (M2a® = {2a2)(N2a® - ¢ 2a?)

Jg(ab) 1 8yn
Ji(ra) e, 4(¢2a® — k%az)l/2

biZ}(£,b)

a?Z({,a) 1]

(56)

with 8,, the Kronecker delta function.

If a magnetic wall is placed in the bisection plane T,
the transverse components of the total electromagnetic
field in region B are

E,p= Y B!J(A;r)coshy(z+d)

i=1

(57)

=1 i

WEGE |

Hyp=

B!J,(A,r)sinhy,(z+d). (58)

At the reference plane 7, these components can be

written as follows:

E5= Y BJy(A;r)

(59)
i=1
H¢B = Z Blle'Il(/\tr) (60)
i=1
with
B, = B/ coshy,d (61)
and
WeELE € 172
Y= T 77 tanh (——L—/\%—elkg) dl.
EZ

€
( —*A%—elkg)
EZ

(62)

Hence, the same procedure is adopted to calculate the

input admittance y,,. We find the same results in replac-

ing coth( ) with tanh( ) in (40) to (56):

. —ae, o .

ym=1*a(y'o— > yqxq)-
In 5 g=1

(63)

C. Numerical Computation

The S-parameter computation starts with the evalua-
tion of quantities A; and {, from a Bessel subroutine. The
roots of transcendental equations (37) and (39) are found
by iteration. Bessel functions are programmed in the
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Fig. 4. Complex permeability tensor measured for a sapphire sample in the 45 MHz-18 GHz frequency range;
thickness = 2 mm; APC7-mm standard:

polynomial approximation form [11]. Hence, for a given
frequency and for a material of known properties, coeffi-

cients y, and ¥, can be computed in both cases of
electric and magnetic walls if the summation over i is
truncated. In fact, this truncation is used to retain a finite

number of higher order modes excited by the discontinu-

ity and present in the sample (i =1,2,- - -, I). In the same

manner, to compute the coefficient A,,, we retain a

number Q of higher order modes excited in the coaxial

waveguide by the discontinuity. Hence (55) is reduced to

two systems of @ equations with Q unknowns X, (g=

1,2,-+-,Q). From this, y, and y,, values are obtained. -
The effect on the admittance computation accuracy of the

number of higher order modes retained has been de-

scribed in [7] and [12] and by other authors [13], [14]. We

show that the accuracy is better than 0.1% if we take

I=20=6[12].

III. INVERSE PROBLEM

This section jnvolves the complex permittivity tensor
computation from S-parameter measurements of the gap
_filled by the uniaxial sample. To avoid contact resistances
and contact capacitances, the sample is metallized on the
contact surfaces with the line conductors. The simultane-
ous calculation of €, =€, ~ j€'| and €, =€, — j€) is car-
ried out by comparison between measured and calculated
S,, and §,; values. For this purpose we use the same
iterative method as used before [7]. This method is de-
rived from the gradient method. The number of itérations
is fixed by the instrumentation error of the network
analyzer.

IV. ExXPERIMENTAL RESULTS

The results of the measurements on sapphire and alu-
mina (99.7%) are represented in Figs. 3 and 4. The
measurements performed on each of these materials were
obtained at room temperature using the HP8510B net-
work analyzer in an APC7 standard line. The thickness of
each sample was 2 mm. Anisotropy is a well-known prop-
erty of sapphire, i.e., a single crystal of aluminum oxide.
In polycrystallirie alumina, a preferred orientation of the
crystallites can sometimes be observed [15), [16]. In sap-
phire, the value of € in the direction of the optic axis is
11.5 according to [17] or 11.7 according to [15]. Perpendic-
ular to the optic axis, €, =9.5 [17] or 9.34 [16]. For
alumina without a preferred orientation, €', = €, =8.76 is
given in [16] and 9.7 in [15]. These two materials show
very low losses (¢’ being lower than 0.001). The values
measured, depicted in Flgs 3 and 4, correspond to those
ant1c1pated However, because of the large errors in small
€ angd €7, the measurement of €” for low-loss samples is
difficult w1th this technique. The accuracy of the method
was computed by simulation on a calculator. The calcula-
tor, programmed for the HP8510B system instrumenta-
tion errors, together with the measurements of the §;
and S,, values, allows the measuring errors in €, and e,
to be determined. To obtain good €” accuracy, €’ and €
should be greater than 0.1. The accuracy is better than
49% for ¢ and for the higher values of €’ (¢’ > 1). For the
low losses, the €’ accuracy is better than 10%. The
uncertainty for €, and e, caused by a small error in
the physical length of the sample is practically equal to
the percentage of the érror. Since it is easy to measure
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the sample length to an accuracy within +0.01 mm,
the uncertainty caused by an error in the length of the
sample material is not a significant factor in this measure-
ment method.

V. CoNcLUSION

A broad-band technique is presented for simultane-
ously measuring the complex elements of the permittivity
tensor of homogeneous uniaxial materials. The material
under test fills a gap in a coaxial line. To avoid contact
resistances and contact capacitances, the sample is metal-
lized on the contact surfaces with the line conductors.
Regquired dimensional tolerances are 0.01 mm. Values for
€, and e, are computed from §,; and §,, measurements
made on an automated network analyzer. This method is
easy to use and requires no corrections in experimental
results. With a single sample, it allows continuous charac-
terization up to 18 GHz. By using APC2.4 connections,
the method can be extended up to 50 GHz.
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